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Introduction
The heat equation

Goal: Model heat (thermal energy) flow in a one-dimensional
object (thin rod).

Set up: Place rod along x-axis, and let

u(x , t) = temperature in rod at position x , time t.

Under ideal conditions (e.g. perfect insulation, no external heat
sources, uniform rod material), one can show the temperature
must satisfy

∂u

∂t
= c2

∂2u

∂x2
.

(
the one-dimensional

heat equation

)
The constant c2 is called the thermal diffusivity of the rod.
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Initial and Boundary Conditions

We now assume the rod has finite length L and lies along the
interval [0, L]. To completely determine u we must also specify:

Initial conditions: The initial temperature profile

u(x , 0) = f (x) for 0 < x < L.

Boundary conditions: Specific behavior at x0 ∈ {0, L}:

1. Constant temperature: u(x0, t) = T for t > 0.

2. Insulated end: ux(x0, t) = 0 for t > 0.

3. Radiating end: ux(x0, t) = Au(x0, t) for t > 0.
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Solving the Heat Equation
Case 1: homogeneous Dirichlet boundary conditions

We now apply separation of variables to the heat problem

ut = c2uxx (0 < x < L, t > 0),
u(0, t) = u(L, t) = 0 (t > 0),
u(x , 0) = f (x) (0 < x < L).

We seek separated solutions of the form u(x , t) = X (x)T (t). In
this case

ut = XT ′

uxx = X ′′T

}
⇒ XT ′ = c2X ′′T ⇒ X ′′

X
=

T ′

c2T
= k .

Together with the boundary conditions we obtain the system

X ′′ − kX = 0, X (0) = X (L) = 0,

T ′ − c2kT = 0.
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Already know: up to constant multiples, the only solutions to the
BVP in X are

k = −µ2n = −
(nπ

L

)2
,

X = Xn = sin (µnx) = sin
(nπx

L

)
, n ∈ N.

Therefore T must satisfy

T ′ − c2kT = T ′ +
(cnπ

L

)
︸ ︷︷ ︸

λn

2
T = 0

T ′ = −λ2nT ⇒ T = Tn = bne
−λ2nt .

We thus have the normal modes of the heat equation:

un(x , t) = Xn(x)Tn(t) = bne
−λ2nt sin(µnx), n ∈ N.
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Superposition and initial condition

Applying the principle of superposition gives the general solution

u(x , t) =
∞∑
n=1

un(x , t) =
∞∑
n=1

bne
−λ2nt sin(µnx).

If we now impose our initial condition we find that

f (x) = u(x , 0) =
∞∑
n=1

bn sin
(nπx

L

)
,

which is the sine series expansion of f (x). Hence

bn =
2

L

∫ L

0
f (x) sin

(nπx
L

)
dx .

Daileda 1-D Heat Equation



The heat equation Homog. Dirichlet conditions Inhomog. Dirichlet conditions Neumann conditions Derivation

Remarks

As before, if the sine series of f (x) is already known, solution
can be built by simply including exponential factors.

One can show that this is the only solution to the heat
equation with the given initial condition.

Because of the decaying exponential factors:

∗ The normal modes tend to zero (exponentially) as t →∞.

∗ Overall, u(x , t)→ 0 (exponentially) uniformly in x as t →∞.

∗ As c increases, u(x , t)→ 0 more rapidly.

This agrees with intuition.
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Example

Solve the heat problem

ut = 3uxx (0 < x < 2, t > 0),
u(0, t) = u(2, t) = 0 (t > 0),
u(x , 0) = 50 (0 < x < 2).

We have c =
√

3, L = 2 and, by exercise 2.3.1 (with p = L = 2)

f (x) = 50 =
200

π

∞∑
k=0

1

2k + 1
sin

(
(2k + 1)πx

2

)
.

Since λ2k+1 =
c(2k + 1)π

L
=

√
3(2k + 1)π

2
, we obtain

u(x , t) =
200

π

∞∑
k=0

1

2k + 1
e−3(2k+1)2π2t/4 sin

(
(2k + 1)πx

2

)
.
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Solving the Heat Equation
Case 2a: steady state solutions

Definition: We say that u(x , t) is a steady state solution if ut ≡ 0
(i.e. u is time-independent).

If u(x , t) = u(x) is a steady state solution to the heat equation
then

ut ≡ 0 ⇒ c2uxx = ut = 0 ⇒ uxx = 0 ⇒ u = Ax + B.

Steady state solutions can help us deal with inhomogeneous
Dirichlet boundary conditions. Note that

u(0, t) = T1

u(L, t) = T2

 ⇒
B = T1

AL + B = T2

 ⇒ u =

(
T2 − T1

L

)
x+T1.
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Solving the Heat Equation
Case 2b: inhomogeneous Dirichlet boundary conditions

Now consider the heat problem

ut = c2uxx (0 < x < L, t > 0),
u(0, t) = T1, u(L, t) = T2 (t > 0),
u(x , 0) = f (x) (0 < x < L).

Step 1: Let u1 denote the steady state solution from above:

u1 =

(
T2 − T1

L

)
x + T1.

Step 2: Let u2 = u − u1.

Remark: By superposition, u2 still solves the heat equation.
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The boundary and initial conditions satisfied by u2 are

u2(0, t) = u(0, t)− u1(0) = T1 − T1 = 0,

u2(L, t) = u(L, t)− u1(L) = T2 − T2 = 0,

u2(x , 0) = f (x)− u1(x).

Step 3: Solve the heat equation with homogeneous Dirichlet
boundary conditions and initial conditions above. This yields u2.

Step 4: Assemble u(x , t) = u1(x) + u2(x , t).

Remark: According to our earlier work, lim
t→∞

u2(x , t) = 0.

We call u2(x , t) the transient portion of the solution.

We have u(x , t)→ u1(x) as t →∞, i.e. the solution tends to
the steady state.
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Example

Solve the heat problem.

ut = 3uxx (0 < x < 2, t > 0),
u(0, t) = 100, u(2, t) = 0 (t > 0),
u(x , 0) = 50 (0 < x < 2).

We have c =
√

3, L = 2, T1 = 100, T2 = 0 and f (x) = 50.
The steady state solution is

u1 =

(
0− 100

2

)
x + 100 = 100− 50x .

The corresponding homogeneous problem for u2 is thus

ut = 3uxx (0 < x < 2, t > 0),
u(0, t) = u(2, t) = 0 (t > 0),
u(x , 0) = 50− (100− 50x) = 50(x − 1) (0 < x < 2).
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According to exercise 2.3.7 (with p = L = 2), the sine series for
50(x − 1) is

−100

π

∞∑
k=1

1

k
sin

(
2kπx

2

)
,

i.e. only even modes occur. Since λ2k =
c2kπ

L
=
√

3kπ,

u2(x , t) =
−100

π

∞∑
k=1

1

k
e−3k

2π2t sin (kπx) .

Hence

u(x , t) = u1(x)+u2(x , t) = 100−50x−100

π

∞∑
k=1

1

k
e−3k

2π2t sin (kπx) .
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Solving the Heat Equation
Case 3: homogeneous Neumann boundary conditions

Let’s now consider the heat problem

ut = c2uxx (0 < x < L , 0 < t),

ux(0, t) = ux(L, t) = 0 (0 < t),

u(x , 0) = f (x) (0 < x < L),

in which we assume the ends of the rod are insulated.

As before, assuming u(x , t) = X (x)T (t) yields the system

X ′′ − kX = 0, X ′(0) = X ′(L) = 0,

T ′ − c2kT = 0.

Note that the boundary conditions on X are not the same as in the
Dirichlet condition case.
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Solving for X

Case 1: k = µ2 > 0. We need to solve X ′′ − µ2X = 0. The
characteristic equation is

r2 − µ2 = 0 ⇒ r = ±µ,

which gives the general solution X = c1e
µx + c2e

−µx . The
boundary conditions tell us that

0 = X ′(0) = µc1 − µc2, 0 = X ′(L) = µc1e
µL − µc2e−µL,

or in matrix form(
µ −µ

µeµL −µe−µL
) (

c1
c2

)
=

(
0
0

)
.

Since the determinant is µ2(eµL − e−µL) 6= 0, we must have
c1 = c2 = 0, and so X ≡ 0.
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Case 2: k = 0. We need to solve X ′′ = 0. Integrating twice gives

X = c1x + c2.

The boundary conditions give 0 = X ′(0) = X ′(L) = c1. Taking
c2 = 1 we get the solution

X = X0 = 1.

Case 3: k = −µ2 < 0. We need to solve X ′′ + µ2X = 0. The
characteristic equation is

r2 + µ2 = 0 ⇒ r = ±iµ,

which gives the general solution X = c1 cos(µx) + c2 sin(µx).
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The boundary conditions yield

0 = X ′(0) = − µc1 sin 0 + µc2 cos 0 = µc2 ⇒ c2 = 0,

0 = X ′(L) = − µc1 sin(µL) + µc2 cos(µL) = − µc1 sin(µL).

In order to have X 6≡ 0, this shows that we need

sin(µL) = 0 ⇒ µL = nπ ⇒ µ = µn =
nπ

L
(n ∈ Z).

Taking c1 = 1 we obtain

X = Xn = cos(µnx) (n ∈ N).

Remarks:

We only need n > 0, since cosine is an even function.

When n = 0 we get X0 = cos 0 = 1, which agrees with the
k = 0 result.
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Normal modes and superposition

As before, for k = −µ2n, we obtain T = Tn = ane
−λ2nt .

We therefore have the normal modes

un(x , t) = Xn(x)Tn(t) = ane
−λ2nt cos(µnx) (n ∈ N0),

where µn = nπ/L and λn = cµn.

The principle of superposition now gives the general solution

u(x , t) = u0 +
∞∑
n=1

un = a0 +
∞∑
n=1

ane
−λ2nt cos(µnx)

to the heat equation with (homogeneous) Neumann boundary
conditions.
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Initial conditions

If we now impose our initial condition we find that

f (x) = u(x , 0) = a0 +
∞∑
n=1

an cos
nπx

L
,

which is simply the 2L-periodic cosine expansion of f (x). Hence

a0 =
1

L

∫ L

0
f (x) dx , an =

2

L

∫ L

0
f (x) cos

nπx

L
dx , (n ∈ N).

Remarks:

As before, if the cosine series of f (x) is already known, u(x , t)
can be built by simply including exponential factors.

Because of the exponential factors, lim
t→∞

u(x , t) = a0, which is

the average initial temperature.
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Example

Solve the following heat problem:

ut =
1

4
uxx , 0 < x < 1 , 0 < t,

ux(0, t) = ux(1, t) = 0, 0 < t,

u(x , 0) = 100x(1− x), 0 < x < 1.

We have c = 1/2, L = 1 and f (x) = 100x(1− x). Therefore

a0 =

∫ 1

0
100x(1− x) dx =

50

3

an = 2

∫ 1

0
100x(1− x) cos nπx dx =

−200(1 + (−1)n)

n2π2
, n ≥ 1.
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Since λn = cnπ/L = nπ/2, plugging everything into the general
solution we get

u(x , t) =
50

3
− 200

π2

∞∑
n=1

(1 + (−1)n)

n2
e−n

2π2t/4 cos nπx .

As in the case of Dirichlet boundary conditions, the exponential
terms decay rapidly with t. We therefore have

lim
t→∞

u(x , t) =
50

3
.
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Deriving the heat equation

(Ideal) Assumptions:

Rod is perfectly insulated with negligible thickness, i.e. heat
only moves horizontally.

No external heat sources or sinks.

Rod material is uniform, i.e. has constant specific heat, s, and
(linear) mass density, ρ.

Recall that

s =

{
amount of heat required to raise one unit

of mass by one unit of temperature.
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Consider a small segment of the rod at position x of length ∆x .

The thermal energy in this segment at time t is

E (x , x + ∆x , t) ≈ u(x , t)sρ∆x .

Fourier’s law of heat conduction states that the (rightward) heat
flux at any point is

−K0ux(x , t),

where K0 is the thermal conductivity of the rod material.

Remark: Fourier’s law quantifies the notion that thermal energy
moves from hot to cold.
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Appealing to the law of conservation of energy,

∂

∂t
(u(x , t)sρ∆x)︸ ︷︷ ︸

heat flux through
segment

≈ −K0ux(x , t)︸ ︷︷ ︸
heat flux in
at left end

+K0ux(x + ∆x , t)︸ ︷︷ ︸
heat flux in
at right end

,

or

ut(x , t) ≈ K0

sρ

ux(x + ∆x , t)− ux(x , t)

∆x
.

Letting ∆x → 0 improves the approximation and leads to the
one-dimensional heat equation

ut = c2uxx ,

where c2 = K0
sρ is called the thermal diffusivity.
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